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Maturation of Borna disease virus glycoprotein
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Jürgen A. Richtb, Wolfgang Gartena

a Institut für Virologie der Philipps-Universität Marburg, Robert-Koch-Straße 17, D-35037 Marburg, Germany
b USDA/ARS/NADC 2300 Dayton Rd., Ames, IA 50010, USA

Received 4 May 2005; revised 28 June 2005; accepted 19 July 2005

Available online 11 August 2005

Edited by Shou-Wei Ding
Abstract The maturation of Borna disease virus (BDV) glyco-
protein GP was studied in regard to intracellular compartmen-
talization, compartmentalization signal-domains, proteolytic
processing, and packaging into virus particles. Our data show
that BDV-GP is (i) predominantly located in the endoplasmic
reticulum (ER), (ii) partially exists in the ER already as
cleaved subunits GP-N and GP-C, (iii) is directed to the ER/
cis-Golgi region by its transmembrane and/or cytoplasmic do-
mains in CD8-BDV-GP hybrid constructs and (iv) is incorpo-
rated in the virus particles as authentic BDV glycoprotein
exclusively in the cleaved form decorated with N-glycans of
the complex type. Downregulation of BDV-glycoproteins on
the cell surface, their limited proteolytic processing, and protec-
tion of antigenic epitopes on the viral glycoproteins by host-
identical N-glycans are different strategies for persistent virus
infections.
� 2005 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Viral glycoproteins are integrated in viral envelopes as

spikes. They bind to host cell receptors before they mediate

fusion between virus envelope and cellular membranes. This

mechanism allows the delivery of nucleocapsids into the

cytoplasm of cells and initiates virus replication. Moreover,

viral glycoproteins are also main targets for the immune
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defense. Downregulation of viral glycoproteins on the cell

surface, their limited proteolytic processing, and protection

of antigenic epitopes on the viral glycoproteins by host-iden-

tical N-glycans are different strategies of virus escape from

antiviral host controls. These mechanisms are extremely

important for persistent virus infections and are suspected

to be used also in persistent infections with the neurotropic

Borna disease virus (BDV).

BDV is the causative agent of Borna disease (BD), a neuro-

logical disorder based on a T cell-mediated immunopathologi-

cal reaction. BD occurs in horses and other warm-blooded

animals; it is also suspected to cause psychiatric disorders in

man, although this matter has not yet been definitely clarified

[1,2].

BDV is the only representative of the Bornaviridae family.

The BDV fine structure reveals a spherical enveloped virus

particle with 90–130 nm in diameter covered by glycoprotein

spikes [3]. BDV contains a single negative stranded, non-

segmented RNA genome of 8.9 kb, which characteristically

replicates and transcribes in nuclei of infected cells [4]. The

BDV genome comprises six open reading frames, encoding

the nucleoprotein NP, the phosphoprotein P, the protein

p10 or X, and the RNA depending RNA polymerase L as

components of the ribonucleoprotein complex and two

membrane proteins, the lipid-associated matrix protein M

[5] and the membrane-integrated glycoprotein GP [6–8].

BDV-GP is the only glycoprotein of BDV, which is also

designed as gp84, gp94 or GP [9–11]. It is synthesized as

a 57 kDa polypeptide precursor molecule which is translo-

cated across the endoplasmic reticulum (ER) membrane

and inserted in the ER membrane as a type I membrane

protein. In the lumen of the ER, GP is co-translationally

N-glycosylated and reaches a molecular mass of about

94 kDa. GP is needed to be proteolytically processed to gain

fusion capacity of GP and infectivity of BDV [11]. GP is

cleaved C-terminally at a tetra-basic motif RRRR by furin

or by a closely related subtilisin-like protease into two sub-

units, the distal N-terminal GP-N and the C-terminal, mem-

brane anchored GP-C. GP-N is sufficient for receptor

binding and GP-C mediates fusion between viral envelope

and host membranes [12,13]. Subcellular localization, trans-

port, and incorporation of the BDV-GP into virions are

not well understood events. Therefore, it was the aim of this

study to identify the intracellular localization of non-cleaved

precursor GP and cleaved GP-N/GP-C complex, and to

determine the strategy used for the downregulation of pre-

cursor BDV-GP transport.
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2. Materials and methods

2.1. Cell culture and purified virus preparation
COS-7-cells were cultured in Dulbecco�s modified Eagle�s medium

supplemented with 10% fetal calf serum (v/v), 50 units/mL penicillin,
50 lg/mL streptomycin, and 2 mM LL-glutamine. All media and cell
culture reagents were purchased from GIBCO� Invitrogen Inc.
(Karlsruhe, Germany).
BDV particles were prepared from about 3 · 108 permanently BDV-

infected confluent grown MDCK-cells. For this purpose, BDV-
infected cells were washed two times with 20 mM HEPES-buffer (pH
7.4), incubated for 1.5 h at 37 �C with 20 mM HEPES-buffer (pH
7.4) supplemented with 250 mM MgCl2 and 1% fetal calf serum (v/v)
[14]. The supernatants of magnesium chloride-treated, BDV-infected
cells were collected, cleared from cell debris by centrifugation at
2500 · g. Then the viral particles were spun down for 1 h through a
6 mL sucrose cushion at 80000 · g (SW28 rotor, ultracentrifuge, Beck-
mann). The virus fraction was resuspended in 1 mL PBS, loaded onto
an equidistant 12-step Optiprep-gradient, ranging from 12% to 30%
Iodixanol in PBS (Sigma Deisenhofen, Germany). The gradient was
centrifuged at 250000 · g for 2 h (SW41 rotor, Beckmann). Aliquots
(100 lL) of each gradient fraction (0.5 mL) were analyzed by infecting
confluent MDCK cell cultures grown in 96-well plates. After 1 h, the
inoculums of the cells were replaced by Dulbecco�s medium containing
2% fetal calf serum. The cells were further incubated for 4 days at
37 �C, before the numbers of BDV-infected cells were determined by
fluorescence forming units per mL (FFU/mL) [11].
Fig. 1. Inefficient transport of BDV-GP to the cell surface. BDV-
infected BHK-T7 cells were first fixed by acetone/methanol and then
incubated with antiserum Rb-aGP-C and the BDV-GP was immuno-
stained by rabbit-IgG conjugated to fluorescein (A), or cells were
incubated with Rb-aGP-C first, subsequently and fixed. The BDV-GP
was stained with rabbit-IgG conjugated to Alexa Fluor�594 (B). Scale
bar represents 10 lm.
2.2. Lectin precipitation, endoglycosidase treatment of

BDV-glycoprotein
A purified BDV preparation (100 lL) was solubilized in 900 ll

GDK-1 buffer [15] and centrifuged 30 min at 13000 rpm. The superna-
tant was incubated with 50 lL lectin-Sepharose, as indicated in Fig. 4,
for 16 h at 4 �C. The precipitated samples were twice washed with
1 mL of GDK-1 buffer. Purified BDV-GP was either directly subjected
to SDS–PAGE and electrophoretic transferred onto nitrocellulose
membranes (NC) or PNGase F treated before SDS–PAGE. The NC-
blot was treated with PNGase F for 16 h at room temperature as de-
scribed before [15] and different BDV glycoprotein forms detected by
immunoblot analysis (see Section 2.3).

2.3. Subcellular fractionation, SDS–PAGE, and immunoblot analysis
Fractionation of subcellular compartments was performed as for-

merly described [16]. About 107 C6-cells permanently infected with
BDV strain He80 were cultured to 100% confluence, washed two
times with buffer A containing 0.25 M sucrose, 10 mM triethanola-
mine, 1 mM EDTA, pH 7.4, scrapped in 5 mL homogenization buf-
fer containing 85% buffer A (v/v) and 15% of buffer B (10 mM Tris,
pH 7.4, 5 mM KCl, 1 mM EDTA, and 128 mM NaCl) and centri-
fuged at 300 · g for 10 min at 4 �C. Cells were resuspended in
300 lL of homogenization buffer and homogenized at 4 �C by 12
times passages through a 25-gauge needle attached to a 1-ml syr-
inge. Fragmented cells were precipitated at 1000 · g for 10 min at
4 �C and the homogenization procedure was repeated once. The
combined post-nuclear supernatants were loaded on a linear 0–
26% Optiprep gradient in buffer B and centrifuged for 2 h at
41000 rpm at 4 �C in a SW41 rotor. Each of the 700 lL fractions
were diluted with 700 lL buffer B and the fragmented cellular mem-
branes were precipitated at 125000 · g (TLA45 rotor, Beckman
High Speed Microfuge) for 60 min at 4 �C. Each pelleted fraction
was dissolved in 50 lL SDS–PAGE sample buffer. The proteins were
separated by SDS–PAGE and analysed by immunochemical reaction
after transfer onto nitrocellulose membranes. For this, the mem-
branes were incubated for 1 h with one of the following primary
antibodies which were diluted in PBS containing 0.1% Tween 20,
BDV-GP-N or respective BDV-GP-C specific polyclonal anti-peptide
sera from rabbits (Rb-aGP-N and RB-aGP-C)[15], GM130 specific
monoclonal antibody, BIP-specific monoclonal antibody (Transduc-
tion Laboratories, Lexington, USA), followed by an incubation with
horse radish peroxidase (HRP)-conjugated mouse or rabbit IgG spe-
cific secondary antibody (DAKO, Hamburg, Germany), respectively.
Immunoreactive HRP-tagged protein bands were visualized by
chemiluminescence using Super Signal substrate (Pierce, Rockfort,
USA).
2.4. Chimeric protein constructs of CD8 a-chain and BDV-glycoprotein

domains
The fusion proteins CD8-BDV-CT, CD8-BDV-TM and CD8-BDV-

TM/CT were generated by subcloning of the cytoplasmic tail (aa 486-
503, CT) and of the transmembrane/cytoplasmic BDV-GP domains
(TM aa 463-485, TM/CT aa 463-503) (Fig. 3A). The encoding cDNA
sequences of TM/CT and CT were amplified by using RT-PCR and
viral (v) RNA isolated from Vero cells infected with BDV strain
No98 [17] and an RNeasy Mini Kit as described by the supplier (Qia-
gen, Hilden, Germany). To obtain the desired CD8-BDV-TM DNA
construct, synthetic complementary oligonucleotides comprising TM
were amplified via PCR to supplement double stranded DNA frag-
ments. The TM domain was inserted into the cloned CD8 gene after
digestions with corresponding restriction endonucleases. Following
restriction sites, XbaI and BamHI (TM/CT), or EcoRI and BamHI
(CT), or XbaI and BamHII of the plasmid pCMUIV-CD8 were used
for the insertion of BDV-GP specific cDNA fragments. The modified
pCMUIV-CD8/E3-K19 was used as ER-control [18].

2.5. Transfection, eukaryotic expression and surface biotinylation
Overnight COS-7 cell cultures (3.5 cm dishes) were transfected with

1 lg of plasmid as indicated using Lipofectamine transfection reagent
(Invitrogen, Karlsruhe, Germany). At 48 h post-transfection, the cells
were fixed and subjected to indirect immune fluorescence staining. The
plasmid pECFP encoding an enhanced cyan fluorescent protein fused
to a fragment of the b-1,4-galactosyltransferase was used as a marker
for trans-medial region of the Golgi apparatus (BD Bioscience Clon-
tech, Heidelberg, Germany). Surface biotinylation was performed as
previously described [19].

2.6. Indirect immunofluorescence
Permeabilized cells were fixed with pre-cooled methanol/acetone

(1:1) for 10 min and kept on ice during all subsequent incubation
and PBS washing steps. Non-permeabilized cells were directly incu-
bated with antibodies for surface proteins/markers. Cells were incu-
bated for 1 h with primary antibodies. The second incubation was
for 1 h with the corresponding secondary antibodies or reagents.
3. Results

3.1. Subcellular localization of BD-GP in virus-infected cells

BDV-infected cells clearly show that BDV-GP is localized

dominantly in subcellular compartments, most likely the ER

and/or Golgi region, after membrane permeabilization [12].

The transport to the plasma membrane is not very efficient,

since only weak fluorescence signals are detectable on the cell

surface of non-permeabilizied, BDV-infected cells (Fig. 1).

These results suggest an inefficient transport of BDV-GP to

the cell surface.
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3.2. Subcellular distribution of non-cleaved and cleaved

BDV-GP

In order to investigate the intracellular distribution of non-

cleaved and cleaved glycoprotein, permanently BDV-infected

C6-cells were homogenized and the subcellular compartments

were fractionated by density-gradient ultracentrifugation.

Each gradient fraction was subjected to SDS–PAGE and

immunoblotting. Non-cleaved GP and GP-C of the GP-N/

GP-C complex were detected on blot membranes by a GP-C

specific antiserum (Fig. 2A). The cellular compartments of

interest, the ER and the Golgi apparatus, were identified by

antibodies raised against the ER-located chaperone BiP

(Fig. 2B) and the cis-Golgi matrix protein GM130 (Fig. 2C),

respectively. As shown in Fig. 2, both forms of the glycopro-

tein, non-cleaved GP and cleaved GP-N/GP-C-complexes,

are predominantly localized in the fractions containing ER-

specific proteins and not in fractions containing the Golgi re-

gion. BDV-GP-N-specific serum revealed similar results (data

not shown). The detection of BDV-GP in the fractions con-

taining ER-specific proteins is comparable with data obtained

by Gonzalez-Dunia and co-workers [9]. Investigations on the

processing of GP oligosaccharide side chains by treatment with

endoglycosidases show that BDV-GP and GP-C retain Endo

H sensitive.

3.3. Determinants of subcellular transport and localization of the

BDV-GP

We were interested in BDV-GP domains which determine

the intracellular distribution of the viral glycoprotein. It is

known from quite a number of integral membrane glycopro-

teins that their localization signals reside in either the cytoplas-

mic or the transmembrane region or both. In order to

investigate the glycoprotein domains for localization signals,

we constructed protein hybrids consisting of the cytoplasmic

and/or transmembrane domains of BDV-GP with various do-

mains of the CD8 molecule (Fig. 3A). CD8 is a type I mem-

brane protein found on cytotoxic T-cells, which has been

previously used as a reporter molecule; as a wild type mole-

cule, it is efficiently transported to the plasma membrane

(Fig. 3B, a, f, k). As a control for ER localization, we used

a truncated CD8 protein fused to an ER-retention signal pep-

tide taken from the adenoviral E3/K19 protein (Fig. 3B, b, g,
Fig. 2. Subcellular Distribution of BDV-GP and its mature form GP-
N/GP-C. Permanently BDV-infected C6 cells were lysed and the post-
nuclear supernatants were subjected to velocity gradient centrifugation
containing 0–26% iodixanol. Aliquots of the collected gradient
fractions were analyzed on immunoblots after SDS–PAGE using
Rb-aGP-C (A), anti-BiP as ER-marker (B), and antibodies directed
against matrix protein GM130 as cis-Golgi marker (C).
I). Transfected and permeabilized COS-7 cells were stained

with the anti-CD8 monoclonal antibody to demonstrate the

intracellular expression of all chimera constructs (Fig. 3B,

a–e). In non-permeabilized, transfected COS-7 cells only

chimeric proteins are detected which are expressed on the cell

surface (Fig. 3B, f–j). Besides the wild type CD8 control, only

the chimeric protein CD8-BDV-CT was detectable on the cell

surface (Fig. 3B, i). The two other constructs CD8-BDV-TM/

CT and CD8-BDV-TM as well as the ER-control CD8-E3/

K19 were not transported to the cell surface (Fig. 3B, g, h

and j). Double staining of the non-permeabilized cells with a

GM1-specific antiserum was used to demonstrate the validity

of the cell surface staining (Fig. 3B, k–o). In order to confirm

these results by another independent method, COS-7 cells were

transfected with the same constructs as shown in Fig. 3. In this

experiment, cell surface proteins were labeled by sulfo-NHS-

biotin, which does not penetrate into the cytoplasma of cell.

Using this method, again only the CD8-BDV-CT and CD8

proteins were labeled with biotin after precipitation with a

CD8 specific antibody and Western blot detection using strep-

tavidin-peroxidase staining (Fig. 3C). Taken together, our

observations indicate that the transmembrane domain of

BDV-GP possesses a retention or retrieval signal which directs

the CD8-BDV-TM and CD8-BDV-TM/CT proteins in an

early cell compartment, most likely in the ER or cis-Golgi

and does not allow cell surface transport. Investigations to

identify ER-retention signals within the ektodomain of

BDV-GP are in progress. However, BDV-GP expression of

mutated GP-forms which were used is inefficient for this anal-

ysis (data not shown).

In order to precisely analyze the compartment(s) where

BDV-GP mostly resides, the CD8-chimeric constructs were

cotransfected with a b-1,4-galactosyltransferase fragment, a

marker for the trans-medial Golgi region (Fig. 3D). The

CD8-BDV-TM and CD8-BDV-CT chimera are transported

from the ER to the Golgi-cisternae as indicated by co-localisa-

tion of the Golgi- and CD8-markers (yellow; Fig. 3D, g and h).

Interestingly, the CD8-BDV-TM/CT chimeric protein did not

show co-localization of CD8 and Golgi markers (Fig. 3D, i).

These data clearly indicate that the information for strict

ER-localization needs both, the transmembrane and cytoplas-

mic domains of BDV.

3.4. Selective incorporation of only cleaved BDV-GP in virus

particles

Until now, it was known that full length GP and GP-C are

presented on infectious virus particles [9]. Weather the N-ter-

minal cleavage fragment GP-N is located on the BDV particle

is still unclear. Therefore, highly purified BDV particles were

prepared from BDV-infected MDCK-cells. The virus release

was induced by a salt shock and virus particles were purified

by density gradient ultracentrifugation. The GP-C specific

antiserum recognizes only one main band with an apparent

molecular mass of 43 kDa representing the membrane an-

chored subunit GP-C when Concanavalin A was used for the

precipitation (Fig. 4A, lane 1). Galanthus nivalis agglutinin

(GNA) and wheat germ agglutinin (WGA) were also able to

precipitate GP-C (Fig. 4A, lanes 2 and 3). When using the

GP-N-specific serum for immunodetection of lectin-precipi-

tated BDV-GP, a series of distinct bands comprising a molec-

ular mass range from 45 to 55 kDa was detected, indicating

micro-heterogeneity of GP-N due to imperfect N-glycosylation



Fig. 3. BDV-glycoprotein domains responsible for ER/cis-Golgi residence. (A) Schematic presentation of CD8-BDV-GP chimeric proteins and CD8-
E3/K19-chimeric ER-resident marker protein which were used for transfection of COS-7 cells. BDV-GP specific domains are symbolized as grey
rectangles. SP, signal-peptide; TM, transmembrane domain; CT, cytoplasmic domain. (B) COS-7-cells were transfected with the indicated chimeric
constructs, after 48 h fixed with pre-cooled methanol/acetone, incubated with CD8-specific monoclonal antibody Okt8 and subsequently stained with
fluorescein conjugated IgG against mouse (panels a–e). COS-7 cells transfected in parallel were first incubated with Okt8 and Alexa Fluor�594 anti-
mouse IgG immunoglobulin for surface immunostaining (panels f–j) or cell surface control staining with the B-subunit of cholera toxin conjugated
with biotin which reacted with streptavidin conjugated with fluorescein (panels k–o). Specimens were visualized using a Zeiss fluorescence microscope
Axioplan equipped with an automatic camera system. Scale bar represents 10 lm. (C) COS-7 cells were transiently transfected with CD8-chimeras
(CD8 (2), CD8-E9/K19 (3), CD8-BDV-TM/CT (4) or CD8-BDV-CT (5)). Untreated cells were used as control (1). 48 h after transfection cell surface
proteins were labeled by sulfo-NHS-biotin. Cells were extracted and extracts were precipitated with CD8-specific antibodies. Precipitates were
subjected to SDS–PAGE and biotinylated proteins were visualized after immunoblot using a streptavidin-peroxidase staining. (D) COS-7 cells were
transiently co-transfected with indicated CD8-chimeric constructs and with the pEYFP-Golgi construct as Golgi marker protein for co-localization
studies. The cells were acetone/methanol-fixed 48 hours later and stained with Alexa Fluor�594 detecting Okt8 specific for CD8 (panels a–c) or were
used directly for detecting the Golgi-marker (panels d–f). Co-localization of transiently expressed proteins was depicted in yellow (panels g and h)
using confocal laser scanning microscope TCS SP2 (Leica, Wetzlar, Germany). Scale bar represents 10 lm.

Fig. 4. Characterization of BDV-GP forms incorporated in virus particles. (A) Purified BDV particles were precipitated with indicated lectins
followed first by SDS–PAGE and transfer onto nitrocellulose membrane. N-glycans were then deglycosylated by PNGase F and the deglycosylated
BDV-glycoprotein detected by immunochemistry using Rb-aGP-C (lanes 1–3) or with Rb-aGP-N (lanes 4–6) and a luminescence detection kit. (B)
Purified BDV particles were first precipitated by indicated lectins (lanes 1–3) and PNGase F treated prior to SDS–PAGE immunochemistry using
Rb-aGP-N. GP-N* represents the completely deglycosylated form of the BDV-glycoprotein subunit GP-N. Molecular masses are indicated on the
left of the panels.
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(Fig. 4A, lanes 4, 5 and 6). After induction of the virus release

with sodium butyrate similar results were obtained (data not

shown). To further prove the detection of GP-N in virus par-

ticles, it was first precipitated by lectins (ConA, GNA, WGA),
then treated with glycosidases and thereafter subjected to

SDS–PAGE and blotting. The deglycosylated GP-N* was de-

tected as a sharp band of 27 kDa (Fig. 4B, lanes 1, 2 and 3).

The signal of GP-N* was partly covered by Con A (26 kDa
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under reduced conditions) in lane 1. Interestingly, no non-

cleaved precursor GP was detectable in the virus particles with

both subunits specific antisera, although the anti-GP-C serum

can recognize non-cleaved BDV-GP (cf. Fig. 2A, [15]). These

findings demonstrate that subunits BDV-GP-C and BDV-

GP-N, but no non-cleaved precursor GP are present in purified

BDV.
4. Discussion

This is the first report which demonstrates that BDV-GP is

cleaved into the GP-N/GP-C complex very early in the secre-

tory pathway either in the ER or cis-Golgi, locations where

the overwhelming amount of BDV-GP resides. Such an early

proteolytic processing is unusual, but was previously docu-

mented for a misfolded pro-insulin receptor which did not

leave the ER [20]. In permanently BDV infected cells a limiting

portion of the GP-N/GP-C complex is delivered to the cell sur-

face where mature BDV particles bud [3,9,15] whereas the chi-

mera CD8-BDV-TM/CT is completely retained intracellular.

Other viral proteins could be necessary for the transport of

the GP-N/GP-C complex to the plasma membrane. This ques-

tions needs to be addressed.

The accumulation of BDV-GP in the ER/cis-Golgi region

may be one of the possible mechanism involved in BDV-persis-

tence. The low concentration of this viral surface protein on

the cell surface may influence the efficiency of virus release,

which is rather low for BDV. The main role in allowing the

BDV evasion from the host immune surveillance system is

the downmodulation of the functional avidity of virus-specific

CD8+ T-cells in BDV-induced immunopathology [21].

The transmembrane or cytoplasmic domain of BDV-GP

does not contain the typical amino acid motif for ER-reten-

tion or signals for Golgi translocation or ER export. We have

further examined both domains suspected to direct the sub-

cellular transport using the CD8 alpha subunit as a suitable

reporter molecule [18]. We detected a dominant retardation

effect associated with the transmembrane domain, which

localize TM-constructs to the ER/Golgi region of the cell.

The combined TM and CT domains of BDV-GP restricted

the localization of CD8-BDV-GP hybrids specifically to the

ER. The suggested mechanisms may be based on interactions

of the TM and CT domains with yet unknown ER-resident

proteins. Length and hydrophobicity of the transmembrane

domain was thought to be crucial for arresting integral mem-

brane proteins in an early compartment [16]. However, the

membrane-spanning region of BDV-GP was calculated to

span 23 amino acids, enough in length to guarantee an

efficient transport of BDV-GP from the ER to the plasma

membrane.

We demonstrate that the subunits BDV-GP-C and BDV-

GP-N, but no non-cleaved precursor GP are present in purified

BDV. This observation is in contrast to previous reports [9]

stating that also the full length GP is present on the BDV par-

ticle. Similar discrepancies were described for the detection of

Vif in human immunodeficiency virus type virions [22]. The

optiprep gradient for purification of virions represents amethod

to separate the majority of the non-viral extracellular molecules

from infectious virion. Therefore, this method seems to be more

reliable for the characterization of the protein content of the

BDV particle.
Further investigations concerning the influence of correct

conformation and oligomerization of BDV-GP in concert with

the BDV-GP cleavage are needed to elucidate the regulation of

BDV-GP export and the packaging of proteolytically pro-

cessed BDV-GP into nascent virus particles.
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